• 精选专栏: default    工业异常检测    时间序列预测   


  • 阅读论文:电网的故障检测


    摘要存在的基于模型的方法无法涵盖时间序列的所有方面先进测量技术的出现带动着新一轮的数据爆炸,推动着数据导向形方法的发展方法包含:运用注意机制的长短期记忆架构,来提取时间序列特征 一维卷积神经网络获取频率信息基于频率的非监督分类信号方法,对于不同的分类,使用多任务学习方法本文提出的技术特别先进,甚至胜过数据网站的冠军术语索引:异常检测,故障检测,卷积神经网络,长短期记忆,多任务学习,高维时间序列1.介绍电网系统升级,把网络和传感技术相...


    2021-12-13 13:36:07    互联网    259    分类:论文速递    专栏:未分组   

    深度学习对振动类光谱信息的处理论文笔记


    光谱原始数据通常存在伪影,噪声等问题,而预处理步骤可能对准确率造成影响,同时对不同数据的适应性差,神经网络能提供端到端的方法(或者省去某个预处理步骤),因而具有一定前景。数据驱动的深度学习技术可以发现大数据集中复杂的结构,并从数据中提取关键特征。一.综述文章:Deep learning for vibrational spectral analysis: Recent progress and a practical guide(2019)自2017年提出,将深度学习应用于光谱处理这一领域,迄


    2021-12-14 22:12:02    互联网    201    分类:论文速递    专栏:未分组   

    异常检测——ABOD(angle-based outlier detection)


    论文:Angle-Based Outlier Detection in High-dimensional Data,kdd2008问题高维度情况下,距离同质化。基础:1、在高维空间中角度比距离更稳定[1]2、如果其他大部分的点都在相似的方向上,那么点O是个离群点3、如果许多其他的点在不同的方向上,那么点O不是离群点。方法对于一个给定的点P,它与任意其他点x,y之间的角度构成一个...


    2021-12-19 14:55:27    互联网    300    分类:论文速递    专栏:工业异常检测   

    时间序列分类算法之LPS论文翻译


    本文主要翻译LPS论文的主体部分,由于水平有限,可能翻译的不够准确。算法原文连接为基于局部自动模式的时间序列表示与相似度摘要:随着从医学、金融、多媒体等不同领域的时间序列数据集的增加,时间序列数据挖掘受到更多人的关注。对于减少维数和产生有用的相似性度量来说,时间序列表示是很重要的。高阶表示,如傅立叶变换,小波,分段多项式模型等,是以前所提出来的。最近,自回归核被用来反映时间序列的相似性。我...


    2021-12-21 15:50:53    互联网    223    分类:论文速递    专栏:时间序列预测